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13.  Multicausality – analysis approaches

Concepts and methods for analyzing epidemiologic data involving more than two
variables; control of confounding through stratified analysis and mathematical modeling.

Multivariable analysis

In the preceding two chapters we delved into the kinds of issues and situations that arise in a
multivariable context.  We introduced the additive and multiplicative models for joint effects of
multiple exposure variables and employed stratified analysis to examine the effects of one variable whle
controlling for the values of others.  In this chapter we consider analytic approaches for examining the
relationships between an outcome and multiple explanatory variables.  The latter may consist of a study
factor and potential confounders, a study factor and potential modifiers, or several exposures all of
which are of interest.

Confounding:

To restate briefly, confounding is a situation where a factor or combination of factors other than the
study factor is responsible for at least part of the association we observe for the association between the
study factor and the outcome.  If we do not control for confounding, then we may misattribute an
effect to the study factor when the association really reflects the effect of another variable.  In a
situation of confounding, the crude data give us the wrong picture of the relationship between the
exposure and outcome.  Other factors may be exaggerating the strength of the relationship or
obscuring some or all of it.  To see the correct picture, we need to take into account the effects of other
factors.

In a law enforcement analogy, the exposure is the suspect in a bank robbery and the other factors are
known offenders with whom he associates.  We need to establish the suspect's guilt.  The suspect may
be completely innocent, may have had some role in the crime, or may have had a greater role than at
first appears.  In order to determine the suspect's guilt, we need to examine the total picture of the
actions of all of the individuals.  In this analogy, confounding would occur if we charge the suspect
with a crime he did not commit or with a role in the crime greater or smaller than accords with his
actions.  For example, it would be confounding to charge the suspect with bank robbery if he was just
passing by and one of the robbers called him in.  Confounding would also occur if we charged the
suspect as an accomplice when in fact he was the principal organizer of the robbery.

The most common method of deciding whether or not confounding exists is to compare the crude
(uncontrolled) results with the controlled results.  If these two sets of results are meaningfully different,
if they send a different "message" or suggest a different conclusion about the association under study,
then confounding is present; the crude results are "confounded".  The conclusion about the presence
of confounding, however, is secondary to our main purpose, which is to obtain a valid estimate of the
existence and strength of association between the exposure of interest and the disease outcome.  When
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we determine that confounding is present, we either present the stratum-specific findings or compute
an adjusted measure of association (e.g., a standardized rate ratio) that controls for the effects for the
confounding variables.

Effect modification

Effect modification is a situation where neither the crude and nor the adjusted measure provides an
adequate picture of the relationship under study.  The picture is not wrong, but it could nevertheless
mislead.  We may not have fulfilled our responsibility to present the full picture.   Effect modification
means that there are important differences between groups (or at different levels of some modifying
variable) in the relationship between the exposure and the disease on our scale of measurement.  Where
effect modification is present, then the relationship between exposure and disease is not susceptible to
being stated in such a simple formulation as "D and E are associated with a relative risk of about 2".
Rather, an answer to the question "what is the relative risk for D given E?", must be "It depends."  For
example, any discussion of the heart disease risks for women talomg oral contraceptives would be
seriously incomplete if it did not explain that the situation is quite different for women who smoke
cigarettes or not, especially at ages above 35 years.

Where effect modification is present, the summary measure is an average of disparate components, so
that the summary is too uninformative by itself.  If Carlos is 90 cm tall, Shizue is 120 cm tall, and
Rhonda is 150 cm tall, it may be useful to know that their average height is 120 cm, but probably not a
good idea to buy three medium size (120 cm) school uniforms.

Analytic approaches

There are two primary approaches to analyzing data involving more than two variables:  stratified
analysis and modeling.  We have already encountered both.  In stratified analysis we divide the
observations into one group for each level or combination of levels of the control variables.  We
analyze the association between the study factor and outcome separately within each group.  In this way
we may be able to observe the association involving the study factor without interference from the
stratification variables.

Comparison of the crude measure of association to the stratum-specific measures or their weighted
average will disclose whether the crude measure of association is confounded.  Examination of the data
within the individual strata will reveal if the measure of association varies so greatly that a summary
measure by itself may mislead.  For a fuller exploration we can stratify by each of the covariables and by
various combinations of them.  Stratified analysis gives us a full picture that we can examine in detail.

At some point, however, detail becomes an obstacle instead of an advantage.  Modeling is a strategy for
submerging the detail and focusing on relationships.  Viewing the data through the framework of the
model we gain analytic power and convenience.  Rather than confuse ourselves and our audience by
presenting a plethora of tables, we employ the elegant simiplicity of the model and its parameters,
through which we can estimate the measures of association we seek.  If we have chosen our model well
and evaluated its suitability, we can obtain an optimal analysis of the data.  But just as a pilot can fly



________________________________________________________________________________________________
www.sph.unc.edu/courses/EPID 168, © Victor J. Schoenbach 13. Multicausality  ― analysis approaches ― 425
rev. 10/28/1999, 11/16/2000, 4/2/2001

very far on instruments but needs to see the runway when landing, a modeling analysis should be
supplemented with some stratified analyses.  On the other hand, in a stratified analysis, computation of
summaries across strata generally involves at least an implicit model framework.

Whichever approaches we use, there's no escaping the fact that how we proceed and how we interpret
the results we observe depend on our conceptual model of the relationships among outcome, exposure,
and stratification variables.  If nothing is known about the factors under study, we may have to proceed
in a completely empirical manner.  But if there is some knowledge, it will serve as a guide.  For
example, suppose we see an association involving our study factor and outcome, but when we control
for another factor the association disappears.  Whether we conclude "confounding" and dismiss the
crude association as an artifact or not depends upon whether or not we think of the stratification
variable as a "real" cause of the outcome rather than the study factor.  If the stratification variable is an
intermediate factor in the causal pathway between the study factor and the outcome, then the situation
is not one of confounding even though it can be numerically identical.

Stratified analysis — interpretation

Stratified analysis is conceptually simple.  It involves disaggregating a dataset into subgroups defined by
one or more factors that we want to control.  For example, in studying the effect of reserpine use on
breast cancer risk, we could stratify by obesity.  Analyses within each strata can then be regarded as
unconfounded by that risk factor, to the degree that the strata are sufficiently narrow.  (If the strata are
broad, e.g., "body mass index of 2.2 through 3.2" or "blood pressure greater than 95 mmHg", we may
have "residual confounding" due to heterogeneity of the stratification variable within one or more
strata.)

We have already encountered stratified analyses, notably in the chapters on confounding and effect
modification.  In this chapter we will gain a more indepth understanding of stratified analysis and how
it relates to other concepts we have learned.  We will also see when and how to obtain an overall
summary measure that takes account of the stratification.

Example

Suppose that four case-control studies have investigated a possible association between reserpine and
breast cancer (a question that arose in the 1970s) and that each controlled for obesity by dividing the
data into two strata.  The table below shows the crude and stratum-specific odds ratios from these four
(hypothetical) studies.  How would we describe the results of each study?
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Association between reserpine and breast cancer
controlling for body weight (odds ratios)

Hypothetical data

Summary Total
Study Obese Nonobese (adjusted) (crude)

A 2.0 2.2 2.1 4.0

B 4.0 2.2 3.1 3.0

C 2.0 2.2 2.1 2.0

D 4.0 2.2 3.1 1.5

In study A, we see that the OR within each body weight category is about 2.0, whereas the crude OR is
4.0.  Study A, therefore, illustrates a situation of confounding: the crude measure of association lies
outside the range of the stratum-specific measures.  The crude OR is meaningfully different than the
adjusted OR and no other method of adjustment would change that, since any weighted average of the
stratum-specific OR's would have to lie between 2.0 and 2.2.

In studies B and C, on the other hand, the crude OR could equal (or nearly equal) a weighted average of
the stratum-specific measures (as is in fact the case for the adjusted OR's shown), because it (nearly) lies
within the range of those measures.  Therefore, confounding is not a feature of the data in either of
these studies.  In study B, if the numbers of participants in each stratum are large enough for us to
regard the difference between the stratum-specific OR's as meaningful (not simply due to "noise"), then
the difference indicates effect modification of the OR.  It was important for the study to report the
stratum-specific OR's and not rely completely on the crude or adjusted measures.

If the strata were large enough and the OR's were regarded as reasonably free of bias, we might wonder
whether in some way obesity could potentiate the effect of reserpine (at least on the odds ratio scale).
If the relationship is judged to be causal and these OR's the best estimates of the strength of
relationship, then the stronger OR for obese patients suggests that they especially should avoid taking
reserpine if they cannot lose weight (the usual criterion for "public health interaction" and "individual
risk management interaction" are departure from the additive model of expected joint effect.  However,
if the observed association is "supra-multiplicative" [stronger than that expected from multiplicative
model], it will also be "supra-additive" [stronger than expected form an additive model]).  In study C,
on the other hand, the slight difference between the two strata, even if not attributable to random
variation, is insufficient to warrant attention.  Any weighted average of the two stratum-specific
measures would be a satisfactory summary.

Study D illustrates both confounding and effect modification, since the crude OR lies outside the range
of the stratum-specific ORs and therefore could not equal any weighted average of the two.  At the
same time, the stratum-specific ORs appear to be importantly different (assuming adequate stratum
sizes).  It would not be sufficient to provide only a summary measure (on the OR scale).
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Summarizing the relationships

Often we are interested in obtaining an overall assessment of the role of the study factor, controlling
for other risk factors.  The usefulness of an overall measure of association will obviously differ in these
four studies.  In studies A and C, a single overall measure could adequately summarize the OR's in the
two strata so that it would not be essential to present them as well.  In studies B and D, however, we
clearly need to present the stratum-specific OR's, though for some purposes a summary measure may
also be useful.

The most convenient overall estimate, if it is not confounded, is the measure based on the aggregate
data, the crude estimate.  The stratified analysis in study C above indicates no confounding by obesity.
If that is the only variable we need to control for, then we can use the crude OR to summarize the
relationship.

In both study A and study D, however, confounding is present.  Relying on the crude OR as the
summary of the stratified results will clearly mislead.  Therefore, we require a summary measure that
"adjusts for" obesity.  The summary measure we derive is a weighted average of the stratum-specific
measures.  The summary measures we encountered in the chapter on standardization (the SMR and the
SRR) are examples of such summary measures.

Relationship between stratified analysis and models for joint effects

The additive and multiplicative models introduced earlier express the joint incidence or effect of two
(or more) factors in terms of the separate incidence or effect of each.  The multiplicative model, for
example, expresses the joint RR as:

RR11  =  RR10  ×  RR01

and the joint risk (or rate) as:

R10 × R01

R11 = —————

R00

where the first and second subscripts indicate presence (1) or absence (0) of the first and second
factors, respectively.  It turns out that if the data fit this model, then in a stratified analysis controlling
for either factor the stratum-specific RR's for the other factor will be equal to each other.

To see this, simply divide both sides of the second form of the model by R01:
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R11 R10  ×  R01 R10
—— = ————— = ——
R01 R00  ×  R01 R00

Let's examine the term on the left and the term on the right.  In both of these terms, the first factor is
present in the numerator rate but absent from the denomator rate.  Thus, each of these terms is a rate
ratio for the effect of the first factor.

RR for 1st factor   RR for 1st factor

(2nd factor present) (2nd factor absent)

Meanwhile, the second factor is present in both numerator and denominator rates on the left, and
absent from both rates on the right.  Since each rate requires a number of cases and a person or person-
time denominator, then each RR must come from a 2 x 2 table containing exposed cases, unexposed
cases, exposed noncases or person-time, and unexposed noncases or person-time.

Thus, these two RR's correspond to a stratified analysis that controls for the second factor as present
vs. absent.  Their equality means that the RR for the outcome with respect to the first factor is the same
in both strata of the second factor.  Had we originally divided by RR01, instead of RR10, we would have
found that the RR for the second factor is the same in both strata of the first factor.

To see the relationship with some familiar numbers, here is a portion of the Mann et al. data presented
earlier:

Incidence of myocardial infarction (MI) in
oral contraceptive (OC) users age 40-44 years,

per 100,000 women-years
__

Cigarettes/day OC*   OC*   RR**    AR***
__________________________________________________________

0-14   47 (R01) 12 (R00) 4  35

15 + 246 (R11) 61 (R10) 4 185
__________________________________________________________

* Rate per 100,000 women-years

** RR=relative risk (rate ratio)

*** AR=attributable risk (rate difference, absolute difference)
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We saw in the chapter on effect modification that the full table conformed quite closely to a
multiplicative model.  If we look back at the table we see that the RR's for the first two rows (3) were
the same and those for the second two rows (4, shown above) were the same.

Suppose we let the four rates in the table be represented by R00, R10, R01,and R11, with the first
subscript denoting smoking and the second denoting OC.  Then we can write:

R10 × R01
R11 = —————

R00

and

61  ×  47
246 ≈ —————

12

The above equality is only approximate, but then the rate ratios weren't exactly the same (3.92 versus
4.03).  Therefore, the statement that the RR is the same in all strata is equivalent to saying that the data
conform to a multiplicative model.

We could equally well have demonstrated this fact by using the OR (try it!).  Had we instead used the
rate or risk difference as the parameter of interest, we would find (by subtraction, rather than division)
that equality of the stratum-specific difference measures is equivalent to having the data conform to an
additive model (try this, too!).

R11  =  R10 + R01 - R00

R11 - R01  =   R10 + R01 - R00 - R01  =   R10 - R00

This relationship between the multiplicative and additive models on the one hand and stratified analysis
on the other is fundamentally trivial, but also fundamental, so it is worth a little more time.

Stratified analysis as "tables" or "columns"

A stratified analysis involving a dichotomous outcome, a dichotomous exposure, and a dichotomous
stratification variable involves two 2 x 2 tables, each with two columns of cases and noncases (or
person-time).  If we look at the data as columns, rather than as tables, we can almost "see" the
multiplicative or additive model structure in the stratification.  For example, here are two 2 x 2 tables
created with hypothetical numbers that produce rates similar to those in the Mann et al. data above and
presented in the form of our earlier stratified analyses.
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Hypothetical data on incidence of myocardial infarction (MI)
in oral contraceptive (OC) users per 100,000 women-years,

controlling for smoking (after Mann et al.)
      ______________________________________________________

Cigarettes 15+ 15+ 0-14 0-14
/day __ __

OC use OC OC OC OC
                                  ______________                         ______________

CHD 49 11 19 8

Women-years* 20 18 40 66
      ______________________________________________________

Rate** 245 61 48 12

R11 R10 R01 R00

  * (in thousands)

** per 100,000  (some differ slightly from Mann et al.'s)

The lefthand 2 × 2 table shows the relationship between OC and CHD among women who smoke 15+
cigarettes/day; the righthand table shows the relationship among women who smoke less than 15
cigarettes/day.  Equivalently, the four columns show the number of cases, women-years of risk, and
CHD rate in, from left to right:

 15+ cigarette/day OC users (R11, = 49/20,000 = 245/100,000wy)

 15+ cigarette/day OC nonusers (R10, = 11/18,000 = 61/100,000wy)

0-14 cigarette/day  OC users (R01, = 19/40,000 = 48/100,000wy)

0-14 cigarette/day  OC nonusers (R00, = 8/66,000 = 12/100,000wy)

Similarly, all of the relevant RR estimates can be obtained by forming ratios of the appropriate rates,
e.g.:

Rate ratios

Both factors (versus neither)     RR11 = R11 / R00 = 245/12 = 20

Smoking (1st factor) acting alone   RR10 = R10 / R00 =  61/12 =  5

Smoking (1st factor) in presence of OC (2nd factor)  RRS|O = R11 / R01 = 245/48 =  5

OC (2nd factor) acting alone   RR01 = R01 / R00 =  48/12 =  4

OC (2nd factor) in presence of smoking (1st factor)  RRO|S = R11 / R10 = 245/61 =  4
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So the multiplicative model for joint effects, introduced in the chapter on effect modification, is
equivalent to stratified analyses in which the ratio measure is the same in all strata.  The same can be
shown for the additive model and the difference measure, though not with these data since they do not
fit an additive model.

"Homogeneity" and "heterogeneity" vs. "synergy" or "antagonism"

In the terminology used when discussing summary measures of association, stratum-specific measures
are said to be "homogeneous" when they are the same and "heterogeneous" when they are
meaningfully different.  Obviously, a summary measure works best in a situation where the measure
being summarized is homogenous across strata.  In the usual case, for a ratio measure of effect,
homogeneity across strata is equivalent to rates, odds, or ratios that conform to a multiplicative model
of joint effects.  In the case of difference (absolute) measures, homogeneity is equivalent to an additive
model of joint effects.  "Effect modification" (or "effect measure modification", in Greenland and
Rothman's new terminology) signifies heterogeneity for that measure.

Typically, epidemiologic analyses of risk factors employ ratio measures of effect.  On the ratio scale,
summary measures from stratified analysis (and as we will soon see, from mathematical models) are
derived on the premise of homogeneity of effects across strata, equivalent to a multiplicative model of
expected joint effects, and also generally inconsistent with an additive model.  So the term "effect
modification" is most commonly applied to situations where the ratio measure of effect is
heterogeneous across strata – even if it should happen (admittedly as the exception) that the data do
conform to an additive model!  In contrast, "synergism" from a public health perspective is now
generally regarded as an observed effect greater than expected from an additive model.  So when there
is "effect modification of the relative risk" there is generally "interaction from a public health
perspective".

Such inconsistency is undoubtedly an indication that these concepts were designed by mortals, rather
than by a higher power, and also underlines the point that "effect modification" is relative to the scale
of measurement or expected model for joint effects.  We can hope that as the discipline evolves, a new
synthesis will develop that will avoid this "schizophrenic" approach.  In the meantime, perhaps the
following summary table will help.
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Homogeneity, heterogeneity, and effect modification
in relation to additive and multiplicative models

Public health impact
perspective Summary measure perspective

1. Data conform to an
additive model
(homogeneity of the
difference measure
across strata)

No interaction
(no synergism)

No effect modification (of
difference measure), summary
difference measure is adequate
Effect modification (of ratio
measure), summary ratio measure
is not adequate

2. Joint effect exceeds
expectation under an
additive model ("supra-
additive" – may or may
not equal or exceed
multiplicative model)

Public health interaction
(synergistic effect)

Effect modification (of difference
measure, perhaps also ratio
measure), summary difference
measure is not adequate (perhaps
also summary ratio measure)

3. Data conform to
expectation under a
multiplicative model
(homogeneity of ratio
measure across strata)

Public health interaction
(synergistic effect)

No effect modification (of ratio
measure), summary ratio measure
is adequate

4. Joint effect exceeds
expectation under a
multiplicative model
("supra-multiplicative")

Public health interaction
(synergistic effect)

Effect modification (of difference
and ratio measures), summary
difference and ratio measures are
not adequate

Types of overall summary measures

When the crude and stratum-specific measures are all similar, then the crude measure serves as a fully
satisfactory summary measure.  When there is meaningful heterogeneity, then we will need to present
the stratum specific measures themselves.  There remains the situation where the stratum-specific
measures are sufficiently homogenous that a summary measure of some kind is of interest but, due to
confounding, the crude measure cannot serve this roll.  In such cases the crude measure is outside the
range of the stratum-specific measures or so far from the middle of the range that it would be a
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misleading summary.  These circumstances call for an adjusted measure, generally some form of
weighted average of the stratum-specific measures.

Suppose that all of the stratum-specific measures are close together (i.e., homogeneous), so that we are
inclined to regard all of them as estimates of the same population parameter (the "true" measure of
association) plus or minus some distortion from sampling variability (if we want to quantify the
compatibility of the data with this supposition, we can employ a statistical test, such as the Breslow-Day
homogeneity chi-square, to assess the expected range of chance variability).  If there is a "true"
underlying value, how can we best estimate it?  Obviously some sort of weighted average is called for,
but what kind?

If there is only one "true" measure of association and each of the strata provides an estimate of that
true measure, then we will want to pay more attention to strata that provide "better" (i.e., more precise)
estimates.  So the averaging procedure we employ should give more weight to the estimates from such
strata.  We can meet this objective by using as weights the estimated precision of each stratum-specific
estimate.  Such a weighted average provides the best estimate of the "true" measure of association,
under the assumptions on which we have been proceeding.  (Rothman refers to summary estimates
derived in this way as "directly pooled" estimates.  However, the term "pooled" is sometimes used to
refer to the crude total over a set of strata or studies.)

[Note: the calculation of summary measures of association as explained below is NOT a required part
of EPID 168.  The only things from this discussion of summary measures that EPID 168 students are
expected to know concern: (1) summary measures are typically weighted averages; (2) if the crude
measure of association falls comfortably within the range of the stratum-specific measures, then it is
not confounded and may serve as a summary measure; (3) if the crude measure is outside the range of
the stratum-specific measures, then confounding is present and the crude measure is not an adjusted
measure of association must be used to summarize the relationship; (4) if stratum-specific measures are
meaningfully different from each other, then any summary measure (crude or adjusted) provides an
incomplete picture of the relationship, so the investigator should report the stratum-specific results and
take that heterogeneity into account in interpreting a summary measure.  The following discussion is
provided for the more advanced or adventurous.  Others may wish to come back to this section during
or after their next course in epidemiologic methods.]

Precision-based weighted summary measure estimates – optional topic

The imprecision of an estimate can be defined as the width of the confidence interval around it.
Since we are used to estimating 95% confidence intervals by adding and subtracting 1.96 times
the standard error of the estimate, the total width is 2 x 1.96 × standard error.  Since all of these
width's will include the 2 x 1.96, all of the variability in precision is contained in the standard
errors.  The smaller the standard error, the greater the degree of precision, so weights
consisting of the receiprocals of the standard errors will accomplish precision-weighting.  In
fact, the weights used are the squares of these reciprocals and are called "inverse variance
weights".
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Difference measure – the CID

The variance of the CID is an easy one to derive, since the CID is simply a difference of two
proportions.  When there are at least 5 "successes", the variance of a proportion (p) can be
estimated simply as p(1-p)/n, where n is the size of the sample.  The variance of a sum or
difference of two independent random variables is the sum of their variances.  So the variance
(square of the standard error) of the CID is:

    var(CID)   =    var(CI1)  +   var(CI0)

CI1 (1-CI1) CI0 (1-CI0)
[s.e.(CID)]2 = —————— + ——————

n1 n0

Using the notation from our 2 × 2 tables, where "a" represents exposed cases and "b"
represents unexposed cases, we can write this formula as:

a/n1 (c/n1) b/n0 (d/n0)
[s.e.(CID)]2 = —————— + ——————

n1 n0

ac bd n03ac + n13bd
[s.e.(CID)]2 = —— + —— = ——————

n13 n03 n13 n03

whose reciprocal (and the stratum-specific weight) is:

1 n13 + n03

w = ————— = ——————
[s.e.(CID)]2 n03ac + n13bd

This value is computed for each stratum and used as the weight for the CID for that stratum.
For two strata (indicated by subscripts 1 and 2):
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w1 CID1 + w2 CID2
Summary CID = ————————

w1 + w2

Since we have just derived the variances of the stratum-specific CID estimates and since the
variance of the summary CID estimate is simply their sum, the variance of this summary CID
estimate is simply 1/w1 + 1/w2 , and a 95% confidence interval for the summary CID estimate
is:

                                                                         ____________
95% CI for (summary) CID  =  CID ± 1.96 \/ 1/w1 + 1/w2

Ratio measures

A uniform random variable that is a proportion has a symmetric distribution, since its possible
values lie between 0 and 1, and the mean of the distribution (0.5) is the same as its median.
Similarly, the distribution of the CID, based on the difference in two uniform random
proportions, is symmetric, since it lies between -1 and 1 and has its mean and median at its null
value, 0.

Distribution of a proportion:

0 0.5 +1
Mean and
median

Distribution of a difference of two proportions:

–1 0 +1
Mean and
median

Because of this symmetry, variance estimates based on an approximate normal distribution
could be used.  Ratio measures, however, do not have symmetric distributions.  The CIR (a
ratio of two proportions) and the OR (a ratio of odds, which are in turn ratios of two non-
independent proportions) both have a lower limit of 0, a median (and null value) at 1.0, and no
upper limit.
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Distribution of CIR, IDR, OR

0 +1
Mean and
median

This asymmetry makes the use of a normal approximation more problematic.  However, the
logarithm of a ratio measure does have a symmetric distribution, so that the normal
approximation can be used.

Distribution of ln(CIR), ln(IDR), ln(OR):

–1 0 +1
Mean and
median

Therefore, variances for the CIR, IDR, and OR are estimated using a logarithmic
transformation.

Ratio measures – CIR:

The natural logarithm of the CIR is:

                            CI1
ln(CIR)   =   ln [ —— ]  =  ln(CI1)  –  ln(CI0)
                            CI0

If each stratum-specific CI is an independent random proportion, then the variance of the
logarithm of the estimate of the stratum-specific CIR is the sum of the variances of the
logarithms of the estimates of the statum-specific CI's.

Var(ln(CIR))  =  Var(ln(CI1))  +  Var(ln(CI0))

The variance of these logarithms is obtained using a Taylor's series approximation as
(Kleinbaum, Kupper, and Morgenstern; Rothman and Greenland):
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c d bcn0 + adn1
Var(ln(CIR)) ≈ —— + —— = ——————

an1 bn0 abn1n0

so that the stratum-specific weights are:

1 abn1n0
w = ————— = ——————

Var(ln(CIR)) adn1 + bcn0

For two strata, then, the precision-weighted summary ln(CIR) is:

w1 ln(CIR1) + w2 ln(CIR2)
Summary (ln(CIR)) = ——————————

w1 +  w2

In order to obtain the summary estimate for the CIR, the summary ln(CIR) must now be
converted to the natural scale by exponentiation:

      Summary CIR   =   exp (summary ln(CIR))

Again, we can use the wi to obtain the variance of the overall CIR estimate, though again a
transformation of scale will be needed.  The variance of the summary ln(CIR) estimate is simply
1/w1 + 1/w2, so the 95% confidence interval is:

                                                                                       __________
95% confidence interval for ln(CIR) = ln(CIR) ± 1.96\/1/w1 + 1/w2

                                                                                         ___________
95% confidence interval for CIR = exp[ln(CIR) ± 1.96\/1/w1 + 1/w2]

Ratio measures – OR:

An approximate variance estimate for the ln(OR) in the ith stratum is:

1 1 1 1
Var(ln(OR)) = — + — + — + —

ai bi ci di

so that the weight for the ith stratum is:
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1
wi = –––––––––––––––––––––––––––

1 1 1 1
(––– + — + — + ––– )

ai bi ci di

 (Notice that a small number in any cell makes the variance large and, therefore, the weight
small.)   The overall ln(OR) is then estimated as:

w1 OR1 + w2 OR2
ln(OR) = ——————————

w1 +  w2

and the overall OR as:

OR  =  exp(ln(OR))

The variance of the ln(OR) is 1/Σwi and can be used to obtain a 95% confidence interval for
the ln(OR), which can then be exponentiated to obtain a confidence interval for the OR, as for
the CIR.

Mantel-Haenszel summary measures:

Nathan Mantel and William Haenszel, in their classic 1959 paper, introduced a summary OR
that is particularly easy to calculate:

Σ[aidi/ni]
ORMH = ————————————

Σ[bici/ni]

Rothman shows that the ORMH is a weighted average, with stratum-specific weights of bici/ni.
These weights are also precision-based, since they are inversely proportional to the variance of
the logarithm of the stratum-specific OR's.  The difference between these weights and the ones
in the previous formula is that for the ORMH the weights are based on variances that apply on
the assumption that the OR's are 1.0, whereas the previous weights did not require that
assumption.  However, the two summary measures produce similar results and are essentially
equivalent when the stratum-specific OR's are not far from 1.0.  An advantage of the ORMH is
that it can be used with sparse data including an "occasional" zero cell (see Rothman).

Formulas for the these and other summary measures of association (IDD, IDR), confidence
intervals, and overall tests of statistical significance can be found in the textbooks by
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Kleinbaum, Kupper, and Morgenstern; Hennekins and Buring; Schlesselman; and Rothman.
The Rothman text includes discussion of maximum likelihood methods of estimating summary
measures.

Although the discussion here has emphasized the usefulness of summary measures in analyses
where there is little heterogeneity across strata, at times an investigator may wish to present a
summary measure even when substantial heterogeneity is present.  Standardized (rather than
adjusted) measures are used in these situations (see Rothman and/or Kleinbaum, Kupper, and
Morgenstern).

[Note:  Time to tune back in if you skipped through the section on weighting schemes for
summary measures of association.  On the other hand, if you are already familiar with
mathematical models you may wish to skim or skip this section.]

Matched designs

As we saw in the chapter on confounding, when the study design uses matching, it may be
necessary to control for the matching variables in the analysis.  In a follow-up study, analyzing
the data without taking account of matching may not yield the most precise estimates, but the
estimates will not be biased.  A case-control study with matched controls, however, can yield
biased estimates if the matching is not allowed for in the analysis.  Thus, the matching variables
should always be controlled in analyzing matched case-control data.  If the result is no different
from that in the unmatched analysis, then the unmatched analysis can be used, for simplicity.

The most straightforward way to control for matching variables is through stratified analysis, as
presented above.  If matching was by category (i.e., frequency matching, e.g., by sex and age
group) was employed, then the analysis procedure is a stratified analysis controlling for those
variables.  If individual matching (e.g., pair matching, matched triples, etc.) was employed, then
each pair or "n-tuple" is treated as a strata.

Suppose that the data from a case-control study using pair matching are as shown in the
following table.

Pair Case Control Type

6 n n A

9 n n A

10 n n A

1 Y n B

2 Y n B
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5 Y n B

3 n Y C

8 n Y C

4 Y Y D

7 Y Y D

If each pair is a stratum, then the stratified analysis of the above data consists 10 tables, each
with one case and one control.  There will be 3 tables like table A, 3 like table B, 2 like table C,
and 2 like table D.

Exp Unexp Exp Unexp Exp Unexp Exp Unexp

Case 0 1 1 0 0 1 1 0

Control 0 1 0 10 1 0 1 0

Type A B C D

Although we cannot compute any stratum-specific measures of association, we can compute a
Mantel-Haenszel summary odds ratio using the formula:

Σ[aidi/ni]
ORMH = ————————————

Σ[bici/ni]

where ai, bi, ci, di are the cells in table i, and ni is the number of participants in table i.  This
general formula becomes much simpler for pair-matched data, because all of the ni are 2 and
many of the terms disappear due to zero cells.  When we remove these terms and multiply
numerator and denominator by 2 (ni), we are left with (a) a one (aidi) in the numerator for each
table where the control is exposed and the case is not (table type B); and (b) a one (bici) in the
denominator for each table where the case is exposed and the control is not (table type C).  For
the above data:
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1 + 1 + 1 3
ORMH = ————— = —— = 1.5

1 + 1 2

So the formula becomes simply OR=B/C, where B is the number of discordant pairs in which
the case is exposed and C is the number of pairs in which the control is exposed.  Note that the
concordant pairs (types A and D) have no effect on the OR.

Mathematical models

Earlier in this chapter we showed that when the RR is the same in all strata of a stratified analysis, then
data conform to a multiplicative model, and vice-versa.  We also stated that for difference measures,
equality of the stratum-specific difference measures is equivalent to having the data conform to an
additive model.  In fact, these simple models can serve as a jumping off point for understanding
mathematical models used to control confounding.

Returning to the topic of breast cancer in relation to obesity and/or reserpine use, suppose that the
following table shows data from a cohort study.  (Note that this is hypothetical - reserpine was at one
time suspected of being related to breast cancer risk, but that evidence has since been discounted.)

Ten-year risk of breast cancer, by obesity and use of reserpine
(hypothetical data)

Risk factors Numeric (illustrative) Algebraic

None (background risk) .01 R00

Obesity only .03 R10

Reserpine only .02 R01

Both reserpine and obesity .04 R11

Thus:

R00 indicates background risk (no reserpine, non-obese)

R10 indicates risk for obesity (without reserpine)

R01 indicates risk for reserpine (without obesity)

R11 indicates risk both reserpine and obesity

In this example, the joint risk conforms to an additive model:

RD11  =  RD10  +  RD01    (Risk differences are additive)
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R11 – R00   =   (R10 – R00)  +  (R01 - R00)

(.04 – .01) =  (.03 – .01) + (.02 – .01)

0.03   =    0.02   +    0.01

or, equivalently:

          R11   =   R10  +  R01  -  R00

         0.04  =  0.03 + 0.02  -  0.01

We can also express the various risks in terms of the baseline risk and the "effect" of the risk factors:

R10  =  R00  +  RD10    (.03 = .01 + .02)   (Obesity "effect")

R01  =  R00  +  RD01    (.02 = .01 + .01)   (Reserpine "effect")

R11  =  R00  +  RD01  +  RD10   (.04 = .01 + .02 + .01)   (Both)

Note that the word "effect" is used here by convention and for convenience, rather than to suggest
causality.

Another way we might think about these various risk equations is to try to put them all into a single
equation with "switches" for which effects are "turned on".  The baseline risk R00 is always present, so
we require only two "switches", one for the obesity effect and one for the reserpine effect:

Risk = R00 +
Obesity
effect

Obesity
"switch" +

Reserpine
effect

Reserpine
"switch"

Risk = R00 + RD10 × + 0.01 ×

Risk = 0.01 + 0.02 × + 0.01 ×

When a "switch" is on (=1) then the 0.02 (obesity effect) or 0.01 (reserpine effect) comes into play,
making the Risk from the model larger.
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Risk = R00 + Obesity
effect

Obesity
"switch"

Reserpine
effect

Reserpine
"switch"

Risk = 0.01 + 0.02 × 0 + 0.01 × 0 = 0.1

Risk = 0.01 + 0.02 × 1 + 0.01 × 0 = 0.03

Risk = 0.01 + 0.02 × 0 + 0.01 × 1 = 0.02

Risk = 0.01 + 0.02 × 1 + 0.01 × 1 = 0.04

We now have a "model" that we can use to compute the risk for any combination of the two risk
factors.  Although this example is trivial, as well as contrived, the model structure is the same as in
multiple linear regression.  To see our model in a more sophisticated form, we have merely to replace
the "switches" by indicator variables that can take the value of 0 or 1.

Linear models:

If we let:

B = 1 if the woman is obese and 0 if she is not

E = 1 if the woman uses reserpine and 0 if she does not

then our model becomes:

R(B,E)   =   R00   +  (RD10)B   +  (RD01)E

Substituting values from the table:

R(B,E)   =   .01   +  (0.02)B   +  (0.01)E

Our two dichotomous variables (B=1 or 0, E=1 or 0) yield four possible combinations of reserpine use
and obesity, just as did our switches model.  We now have a professional-looking linear model for
breast cancer risk in terms of baseline risk, presence or absence of each of two dichotomous risk
factors, and the risk difference (or increase in risk) attributable to each factor.  The risk differences
(0.02, 0.01) are called "coefficients" and are often represented by the Greek letter β; the baseline risk is
often represented by the Greek letter α.
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You may well wonder what is the value of the above machinations, since we have no more information
from our model than we had in our table of risks (i.e., in our stratified analysis).  The accomplishment
lies in the ability to estimate risk differences for each factor, controlling for the other(s), by estimating
the coefficients in the model.  The power of modeling is the ability to use the study data to estimate
model coefficients by using a statistical technique known as regression analysis.  The estimated
coefficients yield epidemiologic measures that are adjusted for the effects of the other variables in the
model.

We can make our model more complex and professional-looking by adding a third variable and
introducing additional notation:

Risk  =  Pr(D=1|X1,X2,X3)  =  a + β 1X1 + β 2X2 + β 3X3

Here, we express risk as the probability that the disease variable equals 1 (as opposed to 0) based on the
values of X1,X2,X3.  Each β represents the risk difference, or increase in risk, for the corresponding
factor (X).  The estimate of each β would be based on the observed risk difference across each stratum
of the other variables.

This model, of course, is just like the one we developed, except that to make it more impressive, α's and
β's are used instead of RD's, X's are used instead of more familiar letters, and a third term has been
added.  For example, if X1 is obesity, X2 reserpine, and X3 parity (also coded as a dichotomous variable,
e.g., nulliparous vs. parous) then the coefficient for X1 will be a weighted average of the risk difference
for obesity use among the four subgroups defined by the other two risk factors:

1. no reserpine-nulliparous women

2. no reserpine-parous women

3. reserpine-nulliparous women

4. reserpine-parous women.

Therefore, each coefficient (risk difference) will be adjusted for the effects of the other variables in the
model, more or less as if we had computed an adjusted overall measure in a stratified analysis.

Just as in stratified analysis, the suitability of the coefficient as an adjusted risk difference depends on
whether the risk difference for reserpine is essentially the same across the four groups.  The model is
designed to handle random variability in the risk differences, but not biological (or sociological,
artefactual, etc.) reality.  So as with any summary measure, the suitability of the linear regression
coefficient (i.e., the estimate of the overall risk difference) can be compromised by meaningful
heterogeneity of the risk difference across strata of the other variables (i.e., on the extent of statistical
interaction or effect modification of the risk difference).

If necessary, the model can accomodate some heterogeneity with the help of an "interaction" term to
represent the "difference in risk differences".  Interaction terms are usually created as a product of the
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two (or more) factors that "interact", since such a term is zero if either of the factors is absent and one
only when both are present.  For the price of one more Greek letter (γ , gamma) we can write the
model:

Risk = Pr(D=1|X1,X2,X3) = α + β1X1 + β2X2 + β3X3 + γ1X1X2

provides for the effect of X1 to depend upon whether X2 is present or absent (as well as for the effect
of X2 to depend upon whether X1 is present or absent).  But if we incorporate interaction terms for all
possible pairs, triplets, . . ., of variables, we will find ourselves right back where we started from – a
fully-stratified analysis and no summary measure to use.

The linear model we have just seen has many attractive features, not unimportantly its simplicity and
the ease with which statistical estimation of its coefficients can be carried out.  Moreover, although we
have developed and illustrated the model using only dichotomous, or "binary" variables, the model can
readily accomodate count and continuous variables, and with some caution, ordinal variables.  (For a
nondichotomous variable, the coefficient is the risk difference for a one-unit increase in the variable.)

But linear models also have several drawbacks.  First, of course, the data may not conform to an
additive model, perhaps to an extent beyond which a single interaction term will suffice to "fit" the
data.  Second, it is possible to obtain estimates of coefficients that will result in "risks" that are less than
zero or greater than one.  The linear model in the homework assignment will do that for certain
combinations of risk factors, though this is more of a technical objection.  Third, linear regression
estimates risk differences, but epidemiologists are usually interested in estimating ratio measures of
association.

Logistic models:

More widely used in epidemiologic analysis is the logistic model (also referred to as the multiple logistic
model or the logit analysis model).  In our linear model, above, we chose to model risk as a linear
function of two risk factors.  In the logistic model, we model the "logit" as a linear function of the risk
factors:

Logit(D=1|X1,X2,X3)  = α + β1X1 + β2X2 + β3X3

The logit is the natural logarithm of the odds, ln(odds) or ln[p/(l-p)].  It may seem a bit farfetched to
work with the logit, rather than risk, but recall our explanation for the use of a logarithmic
transformation in order to estimate the variance of a ratio measure.

Whereas risk ranges from 0 to 1, a confining situation for mathematicians, the logit has no bounds.
Whereas the risk ratio and the OR have their null value (1.0) way to one side of the range of possible
values (zero to infinity), the log(OR) has an unlimited range, with its null value (zero) right in the
middle (i.e., it has a symmetrical distribution).  We generally use Naperian or "natural" logarithms (base
e), abbreviated as ln.
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Moreover, the logistic model, we will see, corresponds to a multiplicative model, which we saw earlier is
the model that is implied by stratified analysis based on the OR or the risk ratio.  Furthermore, the
coefficients that we estimate using logistic regression can be converted into OR's, so that we now have
a ratio measure of association.

It is easy to discover what the logistic coefficients are.  Since the logit is the logarithm of the odds, then
the difference of two logits is the logarithm of an OR (because subtraction of logs corresponds to
division of their arguments – see the appendix to the chapter on Measures of Frequency and Extent).

Suppose that X3 is a dichotomous (0-1) variable indicating absence (0) or presence (1) of an exposure.
First write the model with the exposure "present" (X3=1), and underneath write the model with the
exposure "absent" (X3=0).

logit(D=1|X1,X2,X3=1)  =  α + β1X1 + β2X2 + β3    (X3 =1, present)

       –   logit(D=1|X1,X2,X3=0)  =  α + β1X1 + β2X2 + 0     (X3 = 0, absent)
_______________________________________________________

When we subtract the second model from the first, all the terms on the right are removed except the
coefficient for X3.  On the left, we have the (rather messy) difference of the two logits, one for X3

present and the other for X3 absent:

  logit(D=1|X1,X2,X3=1) –  logit(D=1|X1,X2,X3=0)  = β3

Spelling out the logits:

  ln(odds(D=1|X1,X2,X3=1)) –  ln(odds(D=1|X1,X2,X3=0))  =  β3

and, since a difference of logarithms is the logarithm of a ratio:

             odds(D=1|X1,X2,X3=1)
   ln [ ———————————— ]  =  β3

             odds(D=1|X1,X2,X3=0)

A ratio of odds is simply an OR, in this case, the OR for the disease with respect to the exposure
represented by X3:

ln [ OR ]  =  β3

              exp (ln [ OR ] )  =  exp(β3)
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                                OR  =  exp(β3)

β3 is the difference of the logits, hence the log of the OR for the exposure represented by X3.
Therefore exp(β3) is the OR for a one-unit change in X3.

Note:  exp(β1) means the anti-logarithm:  e, the base for Naperian logarithms, raised to the β1 power.
Since the coefficients are on the logarithmic scale, to see the result on the OR scale, we needed to take
the anti-logarithm.  For example, a logistic model coefficient of 0.7 corresponds to an OR of about 2.0
for a dichotomous variable or 2.0 for a one-unit increase in a measurement variable.

So the coefficient of a dichotomous explanatory variable is the log of the OR of the outcome with
respect to that explanatory variable, controlling for the other terms included in the model.  The
constant term (α) in a model with only dichotomous risk factor variables is the baseline logit (log odds)
for the outcome – the log of the disease odds for a person who has none of the risk factors
(ln[Pr(CI0/(1-CI0)]).

For a nondichotomous risk factor, we can compare the odds at two different levels.  For example, if
age is expressed by a continuous variable X1 for the number of years, then exp(β1) gives the OR per
year of age and exp(10 β1) gives the OR per decade of age.

The logistic model can also be written in terms of risk (i.e., probability) by taking anti-logs (exponents)
and employing some algebra.  The tranformation is left as an optional exercise for those of you who are
interested.  The result is:

                                                           1
Pr(D=1|X1,X2,X3)  =   —————————————

                                        1 + exp(-α - β1X1 - β2X2 - β3X3)

or, if we let L = logit = α + β1X1 + β2X2 + β3X3

                                                          1
Pr(D=1|X1,X2,X3)  =  —————

                                                  1 + exp(-L)

From the risk formulation we can readily see that the logistic function must range between zero and
one, a desirable property for modeling risk.  When L (the logit) is "infinitely negative", then exp(-L) is
"infinitely large" and the probability estimate is zero.  When L is "infinitely large", then exp(-L) is also
"infinitely small" and the probability estimate is one.  When L is zero, then exp(-L) is 1, and the
probability estimate is one-half.
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Key epidemiologic assumptions in the logistic model

1. the log odds of disease are linearly related to each of the risk factors (X variables), or
equivalently, the disease odds are exponentially related to each of the risk factors, or
equivalently, the disease risk is related to each of the risk factors by the logistic (sigmoidal)
curve;

2. the joint effects of the risk factors are multiplicative on disease odds (e.g., if a one-unit increase
in X1 alone multiplies incidence odds two-fold and a one-unit increase in X2 alone multiplies
incidence odds three-fold, then a simultaneous one-unit increase in both X1 and X2 multiplies
incidence odds six-fold) (Greenland, AJPH, 1989; Rothman, Modern epidemiology).

In addition, to estimate the coefficients using regression procedures, it must be assumed that the
subjects are a random sample of independent observations from the population about which inferences
are to be drawn (Harrell, Lee, and Pollock, 1988).

Thus the logistic model corresponds to the multiplicative model for the stratified analysis we
considered above.  The true OR is assumed constant across all strata.  As with the linear model, it is the
assumption of homogeneity that permits us to estimate coefficients that are simple to interpret.

We can relax the assumption by including product terms, as illustrated above for the linear model.  But
then the coefficients are more difficult to interpret.  In addition, carried too far that tactic will return us
toward a fully-stratified situation and will exhaust our sample size, computer resources, and
imagination.

Though we have illustrated both of these models with dichotomous (zero-one) variables, they can
readily accomodate continuous variables.  Again, the model structure is based on an assumption – that
the relationship of the dependent variable (risk, for the linear model, or the logit, for the logistic model)
with the independent variable is linear.

For some relationships, this assumption is readily tenable, e.g., CHD risk and number of cigarettes
smoked.  For others, e.g., mortality risk and body weight, the relationship is U-shaped, so that a simple
linear or logistic model will not be suitable (more complex forms of the linear and logistic models are
available for U-shaped variables through such techniques as the incorporation of squares of variable
values).

Other limitations of the logistic model are that ORs are not the preferred epidemiologic measure of
association, and where the outcome is not rare, the proximity of the OR to the risk ratio does not hold.
Also, the model cannot provide what the study cannot.  Although the logistic model in the above form
can be used with case control data, estimates of risk require follow-up data.  Mathematics can substitute
for data only to a point.
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Other regression models  [Optional for EPID 168]

Two other mathematical model forms that epidemiologists commonly use to control for
confounding and to obtain adjusted measures of effects are the proportional hazards and
Poisson models.

For an outcome with an extended risk period, especially an outcome that is not rare, it is
frequently desirable to use an analysis approach, such as incidence density or survivorship, that
takes into account time to the occurrence of the event.  The proportional hazards model,
developed by David R. Cox, is a widely-used mathematical model for analyzing epidemiologic
data where "time to occurrence" is important.  The "hazard" (conventionally represented by the
Greek letter lambda, λ) is essentially the same concept as instantaneous incidence density.

For three independent variables, the proportional hazards model can be written:

log[ID(t|X1,X2,X3)]  =  log[ID0(t)] + β1X1 + β2X2 + β3X3

(i.e., the natural log of incidence density as a function of time is the sum of the log of a
background or underlying incidence density plus an increment for each predictor variable).

The model can also be formulated in terms of survivorship:

S(t|X1,X2,X3)  =  [S0(t)] exp(β1X1 + β2X2 + β3X3)

where S(t) is the probability that the event has not occurred by time t.

The coefficient of a dichotomous predictor is the logarithm of the incidence density ratio
[ln(IDR)] for that predictor:

log[ID(t|X1,X2,X3=1)]  =  log[ID0(t)] + β1X1 + β2X2 + β3X3    (X3 present)

      – log[ID(t|X1,X2,X3=0)]  =  log[ID0(t)] + β1X1 + β2X2 +   0        (X3 absent)

_____________________________________________________________

                     log[IDR(t)]  = β3

                         IDR(t)  =  exp(β3)

In addition to the assumptions required for the logistic model, the Cox proportional hazards
model requires that the hazard ratio (the IDR) be constant over time, though more complex
survivorship models employing "time-dependent covariates" relax this assumption.

The Poisson model is similar to the logistic model and the proportional hazards model in that
the three involve a logarithmic transformation of the risk function (i.e., odds, hazard) being
estimated and have a linear combination (i.e., an expression of the form:
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a + b1X1 + b2X2 + b3X3 + …) on the right-hand side.  The Poisson model is of particular
interest when outcomes are very rare.

Key points  [EPID 168 students please tune back in here.]

Some guiding principles for multivariable analysis are:

1. Keep in mind that our principal objectives are to describe and interpret the data at hand, using
informed judgment, insight, and substantive knowledge as well as technique.

2. Stratified analysis is a very powerful approach.  Although it does not hold when we try to
analyze many variables simultaneously, we can control for two or three at a time, using different
subsets, and let judgment help to fill the gaps.  It is always possible that an observed association
that is not eliminated when we control for smoking, cholesterol, blood pressure, and Type A
behavior pattern individually could still be due to some combined effect of all of these.  But
how likely is it, especially if we have controlled for each pair of these risk factors and still found
the association?

3. In carrying out a stratified analysis for a variable or a combination of variables, we are asking
the question "is that combination of variables responsible for the observed result?"  The
question must be a reasonable one for us to ask.  If a few principal risk factors individually do
not account for an observed finding, the probability that some combination of them would do
so appears less likely.  [But no one has demonstrated that proposition empirically.]

4. Mathematical modeling is a very powerful approach to data analysis.  But in all cases, a key
question is whether the form of the model is appropriate for the data, and the underlying
relationships, at hand.  Using an inappropriate model can produce biased results.  There are
statistical techniques for assessing the statistical appropriateness of the models employed ("ask
your statistician").

(It is recommended (see Greenland, AJPH, 1989; 79(3):340-349 and Vanderbroucke JP: Should we
abandon statistical modeling altogether? Am J Epidemiol 1987; 126:10-13) that before embarking on
modeling exercises that cannot be directly validated against the results of stratified analyses, one should
first perform parallel analyses with the same variables in order to validate model choices and results
against the stratified data.)

Expectations for EPID 168

! Know the relationship between the multiplicative model and stratified analysis, and (only) basic
concepts of linear regression models and logistic regression models.  Expectations for your
understanding of mathematical modeling are modest:

! Know advantages and disadvantages of modeling (compared to, for example, stratified analysis),
as presented in the chapter on confounding.
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! Know the epidemiologic meaning of the coefficient of an exposure term in a linear regression
model and how the linear regression model relates to stratified analysis and the additive model
discussed in the Effect Modification chapter.

! Know the epidemiologic meaning of the coefficient of an exposure term in a logistic model and
how that model relates to stratified analysis and the multiplicative model.

! Know the epidemiologic meaning of the coefficient of an exposure term in a proportional
hazards model and that that model is used for analyses in terms of incidence density
[survivorship]

! For all three models, the coefficients in a model with several variables are all "adjusted" for the
effects of the other variables in the model.
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