EPID600 (Spring 2007) module on Case-control Studies

Objectives:

- List the characteristics, advantages, and disadvantages of case control studies.
- Define the term odds ratio (OR); calculate and interpret an OR from tabular data in an article.
- Identify when the OR is a good estimate of the RR.
- Distinguish and explain advantages and disadvantages of (a) hospitalbased and (b) population-based controls.
- Differentiate crude from adjusted OR's.
- Distinguish between prevalent and incidence cases.
- Explain the relation of controls in a case-control study to the study base (source population) for the cases.
- Explain why using other diseased persons as controls helps diminish recall bias in studies.
- Interpret 95\% confidence intervals.

Instructions:

1. Read: Aschengrau and Seage, ch. 9-Case-control studies . Answer the practice questions at the end of the chapter or at http://publichealth.jbpub.com/aschengrau/student resources.cfm and check your answers (recommended, but optional) (animated flashcards, weblinks, and Powerpoint slides from the authors] can also be found at that URL)
2. Look over the case study questions and then read the case study reading: Fontham ETH, Correa P, Wu-Williams A, et al. (1991). Lung cancer in nonsmoking women: A multicenter case control study. Cancer Epid Biomarkers \& Prev. 1:35-43. (Notes: HCFA = Health Care Financing Administration, now the Centers for Medicare \& Medicaid Services; abstract, full text)
3. (Optional, but earns credit) Before lab, submit the answers to the starred case study questions (numbers 1, 3, 5, 8, and 10).
4. Read the lecture slides and attend the lecture (or read the speaker notes).
5. Work on the rest of the case study questions in lab and afterwards.
6. Agree on the answers, so the facilitator can submit the group's consensus answers by the following Sunday evening (EST).

Case Study Questions (NOTE: For some of these questions there may not be one "right answer".)
**1. Succinctly state the research question addressed in the study by Fontham et al.?
2. The authors refer to the existing body of data as suggesting that there is a "small but significant elevation in risk of lung cancer" (35, col 2). What do you think they mean by "small" and "significant" in this context?
**3. For each of the "unresolved issues" listed in the introduction, indicate why that issue is important to resolve in order to answer the research question. Could any of these account for the finding of an association between ETS and lung cancer?
4. What are advantages of the study's being population-based?
**5. What is the key information that the control group is intended to provide?
6. What are relative advantages and disadvantages of population controls versus hospital controls?
7. What population group will be unavailable for inclusion in the populationbased control group in this study. Is this unavailability likely to be an important source of bias?
**8. Interviews were conducted with 84% (431 of 514) of eligible cases and 72$73 \%$ of controls. What concern does this raise about the validity of the overall results? In other words, if interviews had been conducted on 100% of eligible cases, how different might the observed odds ratio have been from the one given in the journal article's abstract? Is it likely that the 16% non-interviewed cases and the 28% non-interviewed controls would produce serious distortion? What further data would you want to evaluate this distortion, rather than just speculate on it?
9. Explain the Fontham et al. statement (page 36, column 2, lines 15-16) that colon cancer controls "provided an opportunity to examine the issue of recall bias associated with a recent diagnosis of cancer."
**10. Use the data on "Education" in Table 4 of the journal article to calculate the odds ratio for the association between less than high school education vs. (some college + college + graduate education) and lung cancer in nonsmoking women. Consider "exposed" as women with less than high school education; consider "nonexposed" as the combination of women with some college, college, and graduate education. Use the population controls as the control group.
a. What are the values of cells (A, B, C, and D) of the 2 by 2 table?
b. What is the value of the odds ratio?
c. Can you spot the incorrect number in Table 4?
11. Interpret this odds ratio in a sentence. Can this odds ratio be used as an estimate of the risk ratio or incidence density ratio?
12. The 95\% confidence interval around the odds ratio calculated in 10b above is (1.67-3.06). What information does this confidence interval provide?
13. In Table 5 of the journal article, the adjusted odds ratio for lung carcinomas (outcome) and ETS (exposure) obtained with the population controls was 1.20 (0.93-1.55). Changing only the outcome to adenocarcinoma of the lung yields an adjusted odds ratio of 1.36 (1.02-1.84).
a. Explain what is meant by the "adjusted" odds ratio.
b. How do you interpret the findings both in Table 5 and in Figure 1 of the journal article, in which adjusted odds ratios for adenocarcinomas of the lung are most often larger than those for all lung cancer?

Lung Cancer in Nonsmoking Women: A Multicenter Case-Control Study ${ }^{1}$

Elizabeth T. H. Fontham, ${ }^{2}$ Pelayo Correa, Anna WuWilliams, Peggy Reynolds, Raymond S. Greenberg, Patricia A. Buffler, Vivien W. Chen, Peggy Boyd, Toni Alterman, Donald F. Austin, Jonathan Liff, and S. Donald Greenberg
Department of Pathology, Louisiana State University Medical Center, New Orleans, Louisiana 70112 [E. T. H. F., P. C., V. W. C.]; Department of Family and Community Medicine, University of Southern California, Los Angeles, California 90033 [A. W-W.]; California Department of Health Services, Emeryville, California [P. R., D. F. A.]; Division of Epidemiology, Emory University School of Public Health, Atlanta, Georgia 30322 [R. S. G., I. L.]; School of Public Health, University of Texas Health Science Center, Houston, Texas 77030 [P. A. B., T. A.]; California Public Health Foundation, Berkeley, California 94720 [P. B.]; and Department of Pathology, Baylor College of Medicine, Houston, Texas 77030 [S. D. G.]

Abstract

The association between exposure to environmental tobacco smoke and lung cancer in female lifetime nonsmokers was evaluated using data collected during the first 3 years of an ongoing case-control study. This large, multicenter, population-based study was designed to minimize some of the methodological problems which have been of concern in previous studies of environmental tobacco smoke and lung cancer. Both a cancer control group and a population control group were selected in order to evaluate recall bias. A uniform histopathological review of diagnostic material was conducted for case confirmation and detailed classification. Biochemical determination of current exposure to tobacco and screening of multiple sources of information to determine lifetime nonuse were utilized to minimize misclassification of smokers as nonsmokers.

A 30\% increased risk of lung cancer was associated with exposure to environmental tobacco smoke from a spouse, and a 50% increase was observed for adenocarcinoma of the lung. A statistically significant positive trend in risk was observed as pack-years of exposure from a spouse increased, reaching a relative risk of $\mathbf{1 . 7}$ for pulmonary adenocarcinoma with exposures of $\mathbf{8 0}$ or more packyears. The predominant cell type of the reviewed, eligible lung cancer cases was adenocarcinoma (78%). Results were very similar when cases were compared to each control group and when separate analyses were

[^0]conducted for surrogate and personal respondents. Other adult-life exposures in household, occupational, and social settings were each associated with a 40$\mathbf{6 0 \%}$ increased risk of adenocarcinoma of the lung. No association was found between risk of any type of lung cancer and childhood exposures from a father, mother, or other household members.

Introduction

Approximately one decade has passed since the initial reports of increased risk of lung cancer in nonsmoking women married to smokers (1,2). The ensuing studies have provided a body of data which suggests a small but significant elevation in risk of lung cancer associated with exposure to ETS^{3} (3-22). In reported prospective studies exposure has been assessed by the spouse's smoking history, primarily that of husbands. In case-control studies, the primary ETS exposure assessed has also been that from a spouse, although exposures from parents, other household exposures, and the workplace have been examined in some studies.

In general, these studies have included fewer than 100 nonsmoking lung cancer cases whose self-reported smoking status has not been validated by biochemical determination or other means. Reviews of available studies of ETS and lung cancer in nonsmokers by the National Research Council (23), the International Agency for Cancer Research (24), and others $(25,26)$ have concluded that although misclassification is unlikely to account for all of the observed increased risk, some misclassification of current or former smokers as nonsmokers is likely (0.5-5.0\%). Because smokers tend to marry smokers, misreporting may introduce some bias in the estimation of the magnitude of the observed effect.

This study was undertaken in 1985 in an effort to address a number of unresolved issues related to ETS:
(a) Misclassification of Smoking Status. Multiple sources of information are utilized to ascertain nonsmoking status (medical record, physician, and then the study subject or surrogate). Study respondents are questioned twice (at contact to set up the interview and at the beginning of the interview). Self-reported current nonsmoking status is corroborated by measurement of urinary cotinine.
(b) Histopathological Specificity. Microscopic diagnostic slides are reviewed by one pulmonary pathologist both to confirm eligibility of cases as primary lung carcinomas and to provide a detailed review (subtype, differ-

[^1]Principles of Epidemiology for Public Health (EPID600)

Study designs: Case-control studies

Victor J. Schoenbach, PhD hemeare
Department of Epidemiology School of Public Health University of North Carolina at Chapel Hill
www.unc.edu/epid600/

Confidence intervals \& significance tests

- Everything you've been told so far about confidence intervals and statistical significance is misleading, including this statement.
- I am not licensed to teach statistics, so what I say on this topic mustn't leave this room!

Confidence intervals

- "a plausible range of values for the unknown population parameter"

Michael Oakes, Statistical inference, p. 52

- Exact interpretation is problematic
- We are more confident that a 95% interval covers the parameter than a 90% interval, but the 95% interval is wider (provides a less precise estimate)

10/8/2001

Significance tests

"It might be argued that the significance test, if properly understood, does no harm. This is, perhaps, fair comment, but anyone who appreciates the force of the case presented in this chapter will realize that equally, it does very little good."

Michael Oakes, Statistical inference, p. 72

Atributable risk

Assume that we know a causal factor for a disease.
Conceptually, the "attributable risk" for that factor is:

1. difference in risk or incidence between exposed and unexposed people or
2. difference in risk or incidence between total population and unexposed people

For relative measures, think of $\%$ of cases

Case-control studies

Case-control studies

- Traditional view: compare
- people who get the disease
- people who do not get the disease
- "Controls" a misnomer, derived from faulty analogy to controls in experiment
- Modern conceptualization: controls are a "window" into the "study base"

Population at risk

Case-control studies

Population at risk $(\mathrm{N}=200)$

Week 2

Incidence rate ("incidence density")
ID $=\frac{\text { Number of new cases }}{\text { Population time }}=\frac{7}{?}$

Incidence rate ("incidence density")		
Assume that:		
2 people who became cases in 1st week were at risk for 0.5 weeks each $=2 @ 0.5=1.0$		
3 people who became cases in 2 nd week were at risk for 1.5 weeks each = 3 @ $1.5=4.5$		
2 people who became cases in 3rd week were at risk for 2.5 weeks each $=2 @ 2.5=5.0$		
2002	Casecontas sudies	${ }^{23}$

Incidence rate	
("incidence density")	
ID $=\frac{\text { Number of new cases }}{}$	

Incidence rate
("incidence density")

Population time at risk:
200 people for 3 weeks $=600$ person-wks
But 2 people became cases in 1st week
3 people became cases in 2nd week
2 people became cases in 3rd week
Only 193 people at risk for 3 weeks
Case-control studies
Incidence rate
("incidence density")

Incidence proportion
("cumulative incidence")

$\mathrm{Cl}=\frac{\text { Number of new cases }}{\text { Population at risk }}$
3-week $\mathrm{Cl}=\frac{7}{200}=0.035$

$\mathrm{Cl}=\frac{\text { Number of new cases }}{\text { Population at risk }}$

Incidence proportion

 ("cumulative incidence")Week 1

Can estimate incidence in people who are "unexposed"

Week 1

Can estimate incidence in people who are "unexposed"

Week 2

Can estimate incidence in people who are "unexposed"

Week 3

$$
\begin{aligned}
& \text { 10/8/2001 } \\
& \text { Case-control studies }
\end{aligned}
$$

Entire population, week 1

Entire population, week 2

Entire population, week 3

Incidence rate ("incidence density")		
108200	Number of new cases	
	Population time	
	${ }_{\text {casecomoto sumis }}$	${ }^{37}$

Incidence rate
in unexposed during three weeks

ID $=\frac{\text { Number of new cases }}{\text { Population time }}$
ID $=\frac{3}{124.5+123.5+122.5}=\frac{3}{370.5}=0.008 / \mathrm{wk}$
Casecomonos satuis

Difference between incidence rates in exposed and unexposed		
Incidence rate difference (IRD, IDD)		
$=(0.018-0.008) / \mathrm{wk}$		
	$=0.010$	
How to interpret?		
${ }_{1082001}$	Csaecomots sutis	${ }^{41}$

Difference in incidence rates

Incidence rate difference (IDD)

$$
\begin{aligned}
& =(0.018-0.008) / \mathrm{wk} \\
& =0.010 / \text { week }
\end{aligned}
$$

"The rate in the exposed was 0.010 / week greater than the rate in the unexposed."

Relative difference in incidence rates in exposed and unexposed

Relative incidence rate difference

$$
=\frac{0.018-0.008}{0.008}=2.25-1=1.25
$$

How to interpret?

Ratio of incidence rates in exposed

 and unexposed| Incidence rate ratio |
| :--- |
| $(\mathrm{IRR}, \mathrm{IDR})$ |$=\frac{0.018}{0.008}=2.25$

How to interpret?

Estimating IDR and CIR with the
Odds Ratio

Odds

Odds$\begin{gathered} \text { odds }=\text { probability / (} 1 \text { - probability }) \\ \text { odds }=\text { risk / (1 - risk) } \\ \text { (most commonly }) \end{gathered}$					
Risk	0.010	0.050	0.100	0.20	0.80
Odds	0.010	0.053	0.111	0.25	4.00
2278206	Caseocomos sudes				${ }^{48}$

Odds

Any ratio of two natural numbers can be regarded as an odds:

Exposed: 20
Unexposed: 30
Total: 50
Odds of exposure: 20/50 divided by $30 / 50$

Incidence density ratio is a ratio of exposed to unexposed cases . . .
$\mathrm{IDR}=\frac{\mathrm{ID}_{1}}{\mathrm{ID}_{0}}=\frac{\text { Exposed cases } / \operatorname{Exp} \text { PT }}{\text { Unexposed cases } / \text { Unexp PT }}$ Exposed cases / Unexposed cases =

Exposed PT / Unexposed PT

Ratio of exposed to unexposed population-time = "exposure odds"
 IDR $=\frac{\text { Exposed cases } / \text { Unexposed cases }}{\text { Exp Person-time } / \text { Unexp Person-time }}$ "Exposure odds" in cases
 $=\overline{\text { "Exposure odds" in population }}$

Count exposed and unexposed cases

From before:
Exposed:
ID $=\frac{4}{74.5+73+71.5}=\frac{4}{219}=0.018 / \mathrm{wk}$
Unexposed:
ID $=\frac{3}{124.5+123.5+122.5}=\frac{3}{370.5}=0.008 / \mathrm{wk}$

Exposure odds in cases
= Exposed cases / Unexposed cases

$$
\begin{aligned}
& =(4 / 7) /(3 / 7)=4 / 3 \\
& =\quad 1.33
\end{aligned}
$$

The exposure odds in cases are 1.33

From before:
Exposed:

$$
\mathrm{ID}=\frac{4}{74.5+73+71.5}=\frac{4}{219}=0.018 / \mathrm{wk}
$$

Unexposed:
ID $=\underset{\substack{\text { Casean } \\ 124.5+123.5+122.5}}{3}=\frac{3}{370.5}=0.008 / \mathrm{wk}$

> So incidence density ratio can be expressed as a ratio of odds
"Exposure odds" in cases
IDR $=\frac{\text { "Exposure odds" in population }}{\text { "Ex }}$

$$
=\frac{1.33}{0.59}=2.25 \text { (same as earlier) }
$$

Take sample of "risk set" "density controls" - week 3

Estimating the population odds with the odds in the control group

IDR $=\frac{\text { Exposed cases } / \text { Unexposed cases }}{\text { Exposed controls } / \text { Unexposed controls }}$
We call this the "exposure odds ratio" (OR).
\qquad

Odds ratio from a 2×2 table

	Cases Controls	
Exposed	a	b
Unexposed	c	d
	Odds ratio $=\frac{\mathrm{a} / \mathrm{c}}{\mathrm{b} / \mathrm{d}}=$ad bc	

What about incidence proportion in a cohort? ("cumulative incidence")

$$
\text { 3-week CI }=\frac{\text { Number of new cases }}{\text { Population at risk }}
$$

Population at risk - baseline

Entire population, week 3

Cumulative incidence in unexposed

3-week CI $=\frac{\text { Number of new unexposed cases }}{\underline{\text { Unexposed population at risk }}}$
3-week $\mathrm{Cl}=\quad \frac{3}{125}=0.024$

10/8/2001
Case-control studies 78

Difference in incidence proportions

3-wk cumulative incidence difference (CID)

$$
\begin{aligned}
& =(0.053-0.024) \\
& =0.029
\end{aligned}
$$

"The 3-week cumulative incidence in the exposed was 0.029 greater than in the unexposed."

Relative difference in incidence proportions

3-wk cumulative incidence relative difference

$$
=\frac{(0.053-0.024)}{0.024}=\frac{0.029}{0.024}=1.22
$$

"The 3-week Cl in the exposed was 122\% greater than in the unexposed."

Ratio of incidence proportions for exposed and unexposed

3-week cumulative incidence ratio (CIR)

$$
=(0.053 / 0.024)=2.22
$$

How to interpret?

Ratio of incidence proportions ("relative risk", "risk ratio")

3-week cumulative incidence ratio (CIR)

$$
=(0.053 / 0.024)=2.22
$$

"The 3-week Cl in the exposed was 2.2 times that in the unexposed." [not "times greater than"]

Ratio of incidence proportions, a.k.a. cumulative incidence ratio

$$
\mathrm{CIR}=\frac{\mathrm{Cl}_{1}}{\mathrm{Cl}_{0}}=\frac{\text { Exposed cases / Exp PAR }}{\text { Unexposed cases / Unexp PAR }}
$$

$$
\begin{aligned}
& \text {. . . an odds of exposure in the } \\
& \text { population at risk (PAR) } \\
& \mathrm{CIR}=\frac{\mathrm{Cl}_{1}}{\mathrm{Cl}_{0}}=\frac{\text { Exposed cases / Exp PAR }}{\text { Unexposed cases / Unexp PAR }} \\
& \text { Exposed cases / Unexposed cases } \\
& \text { Exp PAR / Unexp PAR }
\end{aligned}
$$

So cumulative incidence ratio is also an odds ratio

Exposure odds in cases
Exposure odds in population at risk

Exposure odds in cases
= Exposed cases / Unexposed cases
$=\quad 4 / 3$
$=\quad 1.33$
(same as for incidence density ratio)

10/8/2001
Case-control studies
${ }^{90}$

= Exposed PAR / Unexposed PAR
$=\quad 75 / 125$
$\begin{array}{ll}= & 0.60\end{array}$
(slightly different from odds of exposure for person-time)

So cumulative incidence ratio is also an odds ratio
$\mathrm{CIR}=\frac{\mathrm{Cl}_{1}}{\mathrm{Cl}_{0}}=\frac{\text { Exposure odds in cases }}{\text { Exposure odds in pop. at risk }}$
3-week CIR $=\frac{1.33}{0.60}=2.22$

10/8/2001

Sample from population at risk (before cases occur)

Exposure odds in controls
$=$ Exp. controls / Unexp. controls
$=6 / 10$
$=\quad 0.60$
(expected value for the estimated odds)

Exposure odds in population at risk (after cases occur)
$=$ Exposed noncases / Unexp. noncases
$\begin{array}{lc}= & 71 / 122 \\ = & 0.58\end{array}$
$\begin{array}{ll}= & 0.58\end{array}$
(slightly different from ratio of person-time and ratio of population at risk)

Exposure odds in "cumulative" controls
$=$ Exposed noncases / Unexp. noncases
$=5 / 9$
(about) $=0.58$
(Note: $5 / 9=0.555$, but a larger "sample" would produce 0.58$)$ 10882001${ }^{103}$

Case-control design is an efficient sampling technique

- Much more efficient, especially for rare outcomes
- Validity depends upon whether controls provide a clear view of population from which cases arise
- Susceptible to various sources of bias

Odds ratio

$$
\begin{aligned}
\text { OR } & =\frac{\text { Exposed odds in cases }}{\text { Exposure odds in population }} \\
& =\frac{1.33}{0.58}=2.29 \\
& \text { (slightly larger than CIR) }
\end{aligned}
$$

10/8/2001 Case-control studies 104

New Software for Psychics

"Notice to user: By breaking the seal of this envelope, you accept the terms of the enclosed license agreement."

- Adobe Font Pack for Windows

Source: Willmott, Don, Abort, Retry, Fail? PC Magazine, June 14, 1994, 482.

[^0]: Received 5/2/91.
 'This research was supported by Grant CA40095 from the National Cancer Institute.
 ${ }^{2}$ To whom requests for reprints should be addressed, at Department of Pathology, LSU Medical Center, 1901 Perdido St., New Orleans, LA 70112.

[^1]: ${ }^{3}$ The abbreviations used are: ETS, environmental tobacco smoke; SEER, Surveillance, Epidemiology, and End Result; OR, odds ratio; CI, confidence interval.

